Identifying the tool-tissue force in robotic laparoscopic surgery using neuro-evolutionary fuzzy systems and a synchronous self-learning hyper level supervisor

نویسندگان

  • Ahmad Mozaffari
  • Saeed Behzadipour
  • Mehdi Kohani
چکیده

In this paper, two different hybrid intelligent systems are applied to develop practical soft identifiers for modeling the tool-tissue force as well as the resulted maximum local stress in laparoscopic surgery. To conduct the system identification process, a 2D model of an in vivo porcine liver was built for different probing tasks. Based on the simulation, three different geometric features, i.e. maximum deformation angle, maximum deformation depth and width of displacement constraint of the reconstructed shape of the deformed body are extracted. Thereafter, two different fuzzy inference paradigms are proposed for the identification task. The first identifier is an adaptive co-evolutionary fuzzy inference system (ACFIS) which takes advantage of bio-inspired supervisors to be reconciled to the characteristics of the problem at hand. To learn the fuzzy machine, the authors propose a co-evolutionary technique which uses a modified optimizer called scale factor local search differential evolution (SFLSDE) as the core metaheuristic. The concept of co-evolving is implemented through a consequential optimization procedure in which the degree of optimality of the ACFIS architecture is evaluated by sharing the characteristics of both antecedent and consequent parts between two different SFLSDEs. The second identifier is an adaptive neuro-fuzzy inference system (ANFIS) which is based on the use of some well-known neuro computing concepts, i.e. back-propagation learning and synaptic nodal computing, for tuning the construction of the fuzzy identifier. The two proposed techniques are used to identify the force and maximum local stress of tool-tissue. Based on the experiments, the authors have observed that each of the identifiers have their own advantages and disadvantages. However, both ACFIS and ANFIS succeed to identify the model outputs precisely. Moreover, to ascertain the veracity of the derived systems, the authors adopt a Pareto-based hyper-level heuristic approach called synchronous self-learning Pareto strategy (SSLPS). This technique provides the authors with good information regarding the optimum controlling parameters of both ACFIS and ANFIS identifiers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An indirect adaptive neuro-fuzzy speed control of induction motors

This paper presents an indirect adaptive system based on neuro-fuzzy approximators for the speed control of induction motors. The uncertainty including parametric variations, the external load disturbance and unmodeled dynamics is estimated and compensated by designing neuro-fuzzy systems. The contribution of this paper is presenting a stability analysis for neuro-fuzzy speed control of inducti...

متن کامل

Fast Transient Hybrid Neuro Fuzzy Controller for STATCOM During Unbalanced Voltage Sags

A static synchronous compensator (STATCOM) is generally used to regulate voltage and improve transient stability in transmission and distribution networks. This is achieved by controlling reactive power exchange between STATCOM and the grid. Unbalanced sags are the most common type of voltage sags in distribution networks. A static synchronous compensator (STATCOM) is generally used to maintain...

متن کامل

V-ANFIS for Dealing with Visual Uncertainty for Force Estimation in Robotic Surgery

Accurate and robust estimation of applied forces in Robotic-Assisted Minimally Invasive Surgery is a very challenging task. Many vision-based solutions attempt to estimate the force by measuring the surface deformation after contacting the surgical tool. However, visual uncertainty, due to tool occlusion, is a major concern and can highly affect the results’ precision. In this paper, a novel de...

متن کامل

Neuro-fuzzy control of bilateral teleoperation system using FPGA

This paper presents an adaptive neuro-fuzzy controller ANFIS (Adaptive Neuro-Fuzzy Inference System) for a bilateral teleoperation system based on FPGA (Field Programmable Gate Array). The proposed controller combines the learning capabilities of neural networks with the inference capabilities of fuzzy logic, to adapt with dynamic variations in master and slave robots and to guarantee good prac...

متن کامل

Objective Evaluation of Laparoscopic Surgical Skills Using Hidden Markov Models Based on Haptic Information and Tool/tissue Interactions

Laparoscopic surgical skills evaluation of surgery residents is usually a subjective process, carried out in the operating room by senior surgeons. By its nature, this process is performed using fuzzy criteria. The objective of the current study was to develop and assess an objective laparoscopic surgical skill scale using Hidden Markov Models (HMM) based on haptic information, tool/tissue inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014